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ABSTRACT
Sequential recommendation aims to capture users’ dynamic pref-
erences, in which data sparsity is a key problem. Most contrastive
learning models leverage data augmentation to address this prob-
lem, but they amplify noises in original sequences. Contrastive
learning has the assumption that two views (positive pairs) obtained
from the same user behavior sequence must be similar. However,
noises typically disturb the user’s main intention, which results in
the dissimilarity of two views.

To address this problem, in this work, we formalize the denois-
ing problem by selecting the user’s main intention, and apply con-
trastive learning for the first time under this topic, i.e., we propose
a novel framework, namely Multi-Intention Oriented Contrastive
Learning Recommender (IOCRec). In order to create high-quality
views with intent-level, we fuse local and global intentions to unify
sequential patterns and intent-level self-supervision signals. Specif-
ically, we design the sequence encoder in IOCRec which includes
three modules: local module, global module and disentangled mod-
ule. The global module can capture users’ global preferences, which
is independent of the local module. The disentangled module can ob-
tain multi-intention behind global and local representations. From
a fine-grained perspective, IOCRec separates different intentions to

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9407-9/23/02. . . $15.00
https://doi.org/10.1145/3539597.3570411

guide the denoising process. Extensive experiments on four widely-
used real datasets demonstrate the effectiveness of our new method
for sequential recommendation.
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1 INTRODUCTION
The goal of sequential recommendation (SR) is to capture users’
dynamic preferences from their history behaviors, which is able to
accurately make a next-item recommendation [4, 6, 9, 19, 27, 44, 47].
Pioneering work [30] adopts Markov chains to learn sequence rela-
tionships. With the prosperity of deep neural network, CNN-based
[33] and RNN-based models [13, 39] have become two mainstreams
to distill preference information for SR. In addition, attention-based
models can effectively learn users’ preferences by estimating an
importance weight for each item [18, 29]. However, when the train-
ing data is limited, these methods may fail to infer appropriate user
representations. Recently, inspired by Self-Supervised Learning
(SSL), Contrastive Learning (CL) is gradually applied to SR. The
CL mainly contains two key components: data augmentation for
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“Positive Pair”
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(a) Baseline model  (b) IOCRec

Multi-Intention Extraction
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1      2      3     4     5 1      2      3      4     5

1*   1      2     4*    4     5  2       4      5      3      1  

: prepare birthday gifts

: buy travel gear

: pass the time

Figure 1: A case of contrastive learning strategies comparing
baseline model and our new method IOCRec.

enhancing training data and contrastive losses for enhancing self-
supervision signals. Therefore, CL-based models can alleviate the
aforementioned issues in SR.

Though CL-based approaches mitigate data sparsity problem,
they may amplify noises in the original sequence. In practice, the
user selects each item based on an underlying intention, which
can be understood as a subjective reason for the interaction (e.g.
preparing birthday gifts, buying travel gear, passing the time, etc.).
If the current intention of a user is to prepare birthday gifts, then
items related to other historical intentions are regarded as noises. In
the CL, each original sequence is transformed into two views (i.e.,
positive pairs), which are required to be similar. However, actual
user intentions in the two views may not be similar since they are
obscure and highly entangled. Taking Figure 1(a) as an example, in
the original sequence (i.e., 1, 2, 3, 4, 5), the current intention of a user
is to select a suitable lipstick (i.e., 2, 3, 5) to prepare birthday gifts.
Meanwhile, noisy behaviors (i.e., 1, 4) commonly exist in a user’s
interaction history, worsening the extraction of user’s current main
intention. After data augmentation, in one view, noisy behaviors
may introduce items that the user does not care about at the current
moment, such as facial mask (i.e., 1*) andmascara (i.e., 4*). Moreover,
the other view also modifies sequential patterns (i.e., 2, 4, 5, 3, 1),
which changes the user’s current intention to prepare birthday
gifts. Therefore, two views without considering multi-intention
conditions differ significantly, which limits the performance of CL
in SR.

In this paper, we formalize the denoising problem by selecting
the user’s current main intention, our core idea is shown in Fig-
ure 1(b). To improve the incorporation of CL into the SR task, we
propose a framework called Multi-Intention Oriented Contrastive
Learning Recommender (IOCRec), which mainly includes three
key components: (1) Sequence encoder integrating global and
local intention representations. To be specific, we disentan-
gle multi-intention behind the global and local representations
in the latent space. From a global perspective, especially in aug-
mented sequences, it is difficult to distinguish noisy information
in one sequence. So we capture more semantic information from
all sequences to better distinguish current noisy items. From a
local perspective, the local intention representations are inferred
solely based on individual sequence representation, and the local

representation tends to focus on more recent activities in one se-
quence. (2) Multi-intention oriented CL module. We create
high-quality views by extracting multi-intention representations
from augmented sequences. A novel design of the sequence encoder
can better create intent-level positive pairs. In this way, IOCRec
granularly separates different intentions of the same user, so as to
select the user’s current main intention in the denoising process.
(3) A multi-task training strategy. IOCRec can jointly optimize
the CL objective and SR objective effectively. Furthermore, in the
SR task, we select the current main intention to predict the next
item. In the CL task, we maximize the consistency of shared inten-
tions and the diversity of different intentions to jointly optimize
the parameters of the sequence encoder.

Our main contributions are summarized as follows: (1) To the
best of our knowledge, this is the first work to apply intent-level
contrastive learning for denoising problem of the SR task. (2) We
propose a sequence encoder integrating global and local intention
representations to select the current main intention. (3) Empirical
results demonstrate that the process of sequence denoising is feasi-
ble in CL and our framework achieves state-of-the-art performance
on four real-world challenging datasets.

2 PRELIMINARIES
2.1 Problem Definition
We denote user and item sets as U and V respectively. Given a
user 𝑢 ∈ U, the user behavior 𝑠𝑢 is associated with a sequence
of items 𝑠𝑢 = [𝑣1, 𝑣2, · · · , 𝑣𝐿], where 𝑣 ∈ V , 𝐿 denotes the total
number of items in a sequence. The purpose of sequence recom-
mendation is generally assessed as to predict next-item 𝑣 |𝑠𝑢 |+1 ,
which is formulated as follows:

argmax
𝑣𝑖 ∈V

𝑃

(
𝑣 |𝑠𝑢 |+1 = 𝑣𝑖 | 𝑠𝑢

)
, (1)

which is expressed as computing the probability of all candidate
items and selecting the highest score to recommend.

2.2 Multi-Intention Definition
Users may have diverse intentions, i.e. the subjective reasons why
users interact with items (e.g., purchasing travel gear, preparing for
birthday gifts, passing the time, etc.). We aim to preserve the user’s
intentions under𝑘 latent categories, namely c𝑢 = [c(1)𝑢 ; c(2)𝑢 ; . . . ; c(𝑘)𝑢 ]
∈ R𝑑 . The sequence encoder 𝜙 projects each historical item of
𝑠𝑢 into 𝑘 latent spaces with a certain probability expressed as
𝜙𝜽 (𝑠𝑢 ) = 𝑃𝜽 (𝑠𝑢 , c𝑢 ), where 𝜽 is the set that contains all the train-
able parameters, and then estimates the probability that the user 𝑢
will click the 𝑖𝑡ℎ item bymeasuring the similarity between the user’s
intention representation 𝜙𝜽 (𝑠𝑢 ) and the 𝑖𝑡ℎ item’s representation
in the vector space.

2.3 Data Augmentation Operators
Five data-level augmentation operators introduced by [21, 43] are
included in this paper:

• Crop (C): Randomly select a continuous sub-sequence 𝐿C =

⌈𝜂 ∗ |𝑠𝑢 |⌉, where the 𝐿C is controlled by a hyperparameter 𝜂.
The randomly cropped sub-sequence starting from position
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Figure 2: Overall framework. (a) illustrates the structure of Transformer. (b) presents the structure of Sequence Encoder. (c)
predicts the next item based on selecting the current main intention. (d) demonstrates CL of a sequence. The augmentation
operators set A = {C,M, R, S, I}, the details see Section 2.3, it first augments a sequence as positive pair with random select two
augmentation operators 𝑎𝑖 ,𝑎 𝑗 from set A. Then, it encodes the sequence by concatenating embedding outputs from Sequence
Encoder. Finally, it maximizes the agreement between intent-level positive pairs.

𝑐 can be formulated as:

𝑠
Crop
𝑢 =

[
𝑣𝑐 , 𝑣𝑐+1, . . . , 𝑣𝑐+𝐿𝑐−1

]
, (2)

• Mask (M): Randomly mask 𝑙 = ⌈𝛾 ∗ |𝑠𝑢 |⌉ items in an original
sequence, where 𝑙 is the total number of items selected to
mask. This mask method can be formulated as:

𝑠Mask
𝑢 =

[
�̂�1, �̂�2, . . . , �̂� |𝑠𝑢 |

]
, (3)

where �̂�𝑖 is the ’mask’ if 𝑣𝑖 is a selected item, otherwise
�̂�𝑖 = 𝑣𝑖 .

• Reorder (R): Randomly shuffle a continuous sub-sequence
[𝑣𝑟 , 𝑣𝑟+1, . . . , 𝑣𝑟+𝐿𝑅−1], where 𝐿R = ⌈𝜇 ∗ |𝑠𝑢 |⌉ is the length of
sub-sequence, the reordered sequence can be formulated as:

𝑠Reorder𝑢 =
[
𝑣1, . . . , �̂�𝑖 , . . . , �̂�𝑖+𝐿𝑅−1, . . . , 𝑣 |𝑠𝑢 |

]
, (4)

• Substitute (S): Randomly select𝑚 different indices {𝑖𝑑𝑥1, ...,
𝑖𝑑𝑥𝑚}, where 𝑖𝑑𝑥𝑖 ∈ |𝑠𝑢 |, and replace each with the most
similar item depending on the selected indices, where𝑚 =

⌈𝛼 ∗ |𝑠𝑢 |⌉, the substituted sequence can be formulated as:

𝑠Substitute𝑢 =
[
𝑣1, 𝑣2, . . . , �̂�𝑖𝑑𝑥𝑖 , . . . , 𝑣 |𝑠𝑢 |

]
, (5)

where �̂�idx𝑖 replaces 𝑣idx𝑖 , and we employ ItemCF-IUF[1] to
measure item correlations.

• Insert (I): Randomly select𝑚 different indices, and insert
the most similar item at those indices, where𝑚 = ⌈𝛽 ∗ |𝑠𝑢 |⌉,
the inserted sequence can be formulated as:

𝑠Insert𝑢 =
[
𝑣1, 𝑣2, . . . , �̂�idx𝑖 , 𝑣idx𝑖 , . . . , 𝑣𝑛

]
. (6)

where �̂�idx𝑖 is the most similarity to 𝑣idx𝑖 by ItemCF-IUF[1].

3 METHODOLOGY
In this section, we will introduce the details of our proposed IOCRec.
The overall framework is shown in Figure 2.

3.1 Local Module
The Transformer [36] facilitates the progress of SR since it is a
strong encoder structure. To capture the influence of the position,
we add a learnable position embeddingmatrix P = [𝑝1; 𝑝2; . . . ;𝑝𝐿] ∈
R𝐿×𝑑 to the embedding matrix E ∈ R𝐿×𝑑 of the original sequence
𝑠𝑢 , so the input embedding is represented as E(0)

𝑃
. Then we feed the

input embedding into a series of stacked Transformer structures as
our local module. The output of the 𝑙-th Transformer structure can
then be viewed as follows:

E(𝑙)
𝑃

= 𝐿𝑜𝑐𝑎𝑙 (𝑙)
(
E(𝑙−1)
𝑃

)
, 𝑙 ∈ {1, 2, . . .}, (7)

We illustrate the structure of a Transformer in Figure 2(a), which
consists of two components: Multi-Head Attention (MHA) and
position-wise Feed-Forward Network (FFN). The key parts are briefly
summarized as follows:

MHA
(
E(𝑙)
𝑃

)
= concat (head1; · · · ; headℎ)W𝑂 ,

head𝑖
(
E(𝑙)
𝑃

)
= softmax

(
QK⊤√︁
𝑑/ℎ

)
V,

𝐿𝑜𝑐𝑎𝑙

(
E(𝑙)
𝑃

)
=

[
FFN

(
E(𝑙)
𝑃1

)⊤
; · · · ; FFN

(
E(𝑙)
𝑃𝑛

)⊤]
.

(8)

whereQ = E𝑃W𝑄 ,K = E𝑃W𝐾 , andV = E𝑃W𝑉 withW𝑄 ,W𝐾 ,W𝑉 ∈
R𝑑×𝑑/ℎ are the projected query, key and value matrices respectively
to improve the flexibility.W𝑂 ∈ R𝑑×𝑑 and the ℎ is the number of
E(0)
𝑃

into the subspace using different linear projections. The factor
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𝑑/ℎ in this attention module is the scale factor to avoid large val-

ues of the inner product. Position-wise FFN applies at each position
of the above sub-layer’s output with shared learnable parameters.
Finally, we take the output matrix E(𝑙)

𝑃
from the top Transformer

structure as the local representation.

3.2 Global Module
With the stacking of the transformer structures, the local repre-
sentation may pay attention to the user’s more recent interactions.
However, in augmented sequences, a large amount of noise infor-
mation will be introduced, and it is difficult to capture the main
intention from the current sequence. So we introduce a learnable
query matrix Q𝑆 ∈ R𝐿×𝑑 shared by all sequences, so that more
available information can be utilized for the prediction at each step
in the sequence during training. As seen in Figure 2(b), the global
module computation is defined as:

𝐺𝑙𝑜𝑏𝑎𝑙 (E) = Dropout(softmax
(
Q𝑆

(
EW′

𝐾

)𝑇 )
EW′

𝑉 ) . (9)

where E ∈ R𝐿×𝑑 is the input matrix of the original sequence 𝑠𝑢 ,
W′
𝐾
,W′

𝑉
∈ R𝑑×𝑑 , which are projection matrices to be learned,

similar toW𝑄 ,W𝐾 ,W𝑉 . Note that besides the query condition, the
embedding layer in Eq.(9) also ignores that the position information
P. It is worth mentioning that in our case, the global representations
of the sequence is adopted the same to all steps, which means
that Q𝑆 is updated after learning semantic information from other
sequences. So a dropout layer is very important during training so
as to generalize the global representation to all steps. In this way, we
can distinguish the importance of different items for generating the
global representation of the sequence, leading to better extraction
of global intentions.

3.3 Disentangled Module
The local module and the global module can not completely fulfill
our requirements of the sequence encoder. In particular, their ability
at capturingmultiple intentions is limited. The disentangled module
is appended after local module and global module so as to reuse
their expressive power.

3.3.1 Relevance weighting. According to the distance between the
sequence embedding and a set of intention prototypes, we disentan-
gle the user preference into 𝑘 intentions. For brevity, we abbreviate
LayerNorm as LN, which can be written as:

𝑝𝑘 |𝑖 =
exp

(
1√
𝑑
LN1

(
e(𝑖)𝑢

)
· LN2

(
c(𝑘)𝑢

))
∑𝐾
𝑘′=1 exp

(
1√
𝑑
LN1

(
e(𝑖)𝑢

)
· LN2

(
c(𝑘

′)
𝑢

)) , (10)

where 𝑝𝑘 |𝑖 is to measure how likely the main intention at position
𝑖 is related with the 𝑘-th latent intention, e(𝑖)𝑢 is the global or local
representation from the current user’s historical behaviors, i.e.,
it is short for 𝐿𝑜𝑐𝑎𝑙 (𝑠 (𝑖)𝑢 ) or 𝐺𝑙𝑜𝑏𝑎𝑙 (𝑠 (𝑖)𝑢 ). c(𝑘)𝑢 ∈ R𝑑 is the 𝑘-th
prototype intention of users, LN 𝑙 (·) represents different layer
normalization layers, which are distinguished by the 𝑙 , since each
layer normalization layer has its own parameters for scaling its
output.

3.3.2 Attention weighting. In addition to the relevance weight 𝑝𝑘 |𝑖 ,
we also consider attention weight 𝑝𝑖 to measure how likely the
intention at position 𝑖 is essential for predicting the user’s next
intention.

𝑝𝑖 =

exp
(

1√
𝑑
key𝑖 · query

)
∑𝐿
𝑖′=1 exp

(
1√
𝑑
key𝑖′ · query

) ,
query = LN3

(
𝜑𝑡 + e(𝑡 )𝑢 + 𝜌

)
,

k̂ey𝑖 = LN 4
(
𝜑𝑖 + e(𝑖)𝑢

)
,

key𝑖 = k̂ey𝑖 + ReLU
(
W⊤k̂ey𝑖

)
,

(11)

where 𝑖 = 1, 2, . . . , 𝑡 , W ∈ R𝑑×𝑑 , 𝜌 ∈ R𝑑 , and 𝜑𝑖 ∈ R𝑑 are learnable
parameters. We introduce 𝑝𝑖 to avoid focusing too much on the
latest intention in the vector space, and the earlier intentions that
are close to the latest intention in the vector space are more likely
to be important. Since the above assumption may not always be
correct, so it is necessary to introduce the learnable parameters 𝜑𝑡
and 𝜌 .

3.3.3 Intention disentangling. We employ intention disentangling
instead of intention aggregation, we disentangle the user’s rep-
resentation for each position 𝑖 in a sequence 𝑠 (𝑖)𝑢 under 𝑘 latent
categories according to 𝑝𝑘 |𝑖 and 𝑝𝑖 . The 𝑘-th intention is computed
as follows:

𝐿𝐼 (𝑠 (𝑖)𝑢 ) (𝑘) = LN5
(
𝑝𝑘 |𝑖 · 𝑝𝑖 · 𝐿𝑜𝑐𝑎𝑙 (𝑠

(𝑖)
𝑢 )

)
,

𝐺𝐼 (𝑠 (𝑖)𝑢 ) (𝑘) = LN5
(
𝑝𝑘 |𝑖 · 𝑝𝑖 ·𝐺𝑙𝑜𝑏𝑎𝑙 (𝑠

(𝑖)
𝑢 )

)
,

𝐹𝑖𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 (𝑠 (𝑖)𝑢 ) (𝑘) = 𝐿𝐼 (𝑠 (𝑖)𝑢 )
(𝑘)

+𝐺𝐼 (𝑠 (𝑖)𝑢 )
(𝑘)

.

(12)

where𝑘 ∈ {1, 2, . . .}, finallywe add up the global intention𝐺𝐼 (𝑠 (𝑖)𝑢 ) (𝑘)

and the local intention 𝐿𝐼 (𝑠 (𝑖)𝑢 ) (𝑘) from the same intention proto-
types 𝑘 , thus each user gets 𝑘 final intention representations for
each position i.

3.4 Multi-Intention Contrastive Learning
3.4.1 Intent-Level Positive Pairs. Given a minibatch of 𝑁 users
{𝑢1, 𝑢2, ..., 𝑢𝑁 }, we apply two random augmentation operators𝑎𝑖 , 𝑎 𝑗
from set {C,M, R, S, I} for each user and obtain 2𝑁 augmented se-
quences [𝑠𝑎𝑖𝑢1 , 𝑠

𝑎 𝑗
𝑢1 , 𝑠

𝑎𝑖
𝑢2 , 𝑠

𝑎 𝑗
𝑢2 , ..., 𝑠

𝑎𝑖
𝑢𝑁 , 𝑠

𝑎 𝑗
𝑢𝑁 ]. The multi-intention repre-

sentations for augmented sequences can be viewed as follows:

𝑣𝑖𝑒𝑤1(𝑠𝑎𝑖𝑢 ) (𝑘) = 𝐿𝐼 (𝑠𝑎𝑖𝑢 ) (𝑘) +𝐺𝐼 (𝑠𝑎𝑖𝑢 ) (𝑘) ,

𝑣𝑖𝑒𝑤2(𝑠𝑎 𝑗𝑢 ) (𝑘) = 𝐿𝐼 (𝑠𝑎 𝑗𝑢 ) (𝑘) +𝐺𝐼 (𝑠𝑎 𝑗𝑢 ) (𝑘) ,
(13)

where 𝑘 ∈ {1, 2, . . .}, view1 and view2 means that we add the global
intention representation and the local intention representation from
the same intention prototype, thus we get 𝑘 intent-level representa-
tions for each augmented sequence. As shown in Figure 2(d), since
we generate two augmented sequences as inputs for two indepen-
dent sequence encoders, we finally generate 𝑘 intent-level positive
pairs, i.e. 2 ∗ 𝑘 intention representations.
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3.4.2 Contrastive Loss. In the CL task, our contrastive loss function
is applied to distinguish whether the two representations are de-
rived from the same intention in the same user historical sequence.
With intention extraction from the sequence encoder, we can obtain
2𝑁 ∗ 𝑘 intent-level positive pairs in a minibatch of {𝑢1, 𝑢2, ..., 𝑢𝑁 }
users. We treat each pair

(
(𝑠𝑎𝑖𝑢 ) (𝑘) , (𝑠𝑎 𝑗𝑢 ) (𝑘)

)
as a positive pair, and

the other 2(𝑁 ∗𝑘 − 1) intent-level augmented sequences are consid-
ered as negative samples for this pair. Therefore, the loss function
LCL is optimized as follows:

LCL
(
(𝑠𝑎𝑖𝑢 ) (𝑘) , (𝑠𝑎 𝑗𝑢 ) (𝑘)

)
= − log

exp
(
sim

(
(𝑠𝑎𝑖𝑢 ) (𝑘) , (𝑠𝑎 𝑗𝑢 ) (𝑘)

))
∑
𝑠∈𝑛𝑒𝑔 exp

(
sim

(
(𝑠𝑎𝑖𝑢 ) (𝑘) , 𝑠

) ) .
(14)

where sim(·) is a dot product to measure the similarity between two
shared intention representations. By creating high-quality views
with intent-level, we can not only increase the number of negative
samples to improve the performance of CL, but also keep the inde-
pendence between different intentions. In this way, we can better
extract the current main intention for the next-item prediction.

3.5 Multi-Task Training
In the SR task, we present next-item prediction in Figure 2(c). In
a sequence, we match the main intention at the current position
𝑡 for each positive and negative sample during the training stage,
so as to select the main intention of the current user to predict the
next item. Our SR loss for each user 𝑢 is defined as follows:

LSR
(
𝑠𝑡𝑢

)
= − log

max𝑘∈{1,2,...,𝑘 }
(
exp

(
𝑠𝑡⊤𝑢 · 𝑣+

𝑡+1
) )∑

𝑣′
𝑡+1∈V max𝑘∈{1,2,...,𝑘 }

(
exp

(
𝑠𝑡⊤𝑢 · 𝑣 ′

𝑡+1

)) ,
(15)

To leverage the intent-level self-supervised signals derived from
the unlabeled raw data to enhance the performance of sequential
recommendation, we adopt a multi-task strategy where the SR task
and the CL task are jointly optimized. The joint loss is a linear
weighted sum calculated as:

Ljoint = LSR + 𝜆LCL . (16)

where 𝜆 is a hyper-parameter controlling the weight of CL task
loss.

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following research questions:
• RQ1: Does IOCRec yield better recommendation?
• RQ2: How does multi-intention contrastive learning affect the
performance of IOCRec?

• RQ3: How do different modules (e.g., global intention, etc.) affect
the performance of IOCRec?

• RQ4: How do different hyper-parameters affect the performance
of IOCRec?

4.1 Experimental Settings
4.1.1 Datasets. We conduct our experiments on four datasets col-
lected from four real-world platforms with sparsity levels. The
statistical details of all datasets after preprocessing are reported in
Table 1, we briefly introduce their properties below.

Table 1: The statistics of the datasets.

Dataset # Users # Items # Actions Avg.length Sparsity

Sports 25,598 18,357 296,337 8.3 99.95%
Beauty 22,363 12,101 198,502 8.9 99.73%
Yelp 30,431 20,033 316,354 10.3 99.95%
Toys 19,412 11,924 167,597 8.6 99.93%

(1) Amazon Beauty, Sports, and Toys: In this work, we select
three subcategories from Amazon, they are obtained from Ama-
zon review datasets in [26], which contain product reviews and
abundant metadata.

(2) Yelp1: This is obtained from a business platform, note that
we only use the transaction records after January 1st, 2019.

For all datasets, we group the interaction records by users and
sort them by the interaction timestamps ascendingly. Following
[22], we only keep the 5-core datasets, and discard users and items
with fewer than 5 interactions. For each user, we adopt the last
interacted item as the test data , the item just before the last as the
validation data. The remaining items are used for training.

4.1.2 Evaluation Metrics. To conduct the performance evaluation,
we employ two widely used metrics: Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). We report results on HR@5,
10 and NDCG@5, 10. Since the item set is large, to avoid heavy
computation on all user-item pairs, following the common strategy
[15, 34, 48], we pair each ground-truth item in the test set with 99
randomly negative items that the user has not interacted with, and
rank these items with the ground-truth item together.

4.1.3 Baseline Methods. We compare our proposed approach with
the following nine baselines:
• PopRec is a simple method that ranks items according to their
popularity measured by the number of associated actions.

• GRU4Rec [13] is a pioneering work that applies GRU to model
user click sequence for session-based recommendation.

• Caser [33] is a CNN-based method capturing high-order Markov
Chains for sequential recommendation.

• BERT4Rec [31] adopts a deep bidirectional self-attention model
with mask mechanism in sequential recommendation.

• SASRec [15] uses a left-to-right transformer model with single-
head attention mechanism to recommend the next item.

• DSSRec [25] utilizes seq2seq training and performs optimization
in latent space for sequential recommendation.

• S3-RecMIP,SP [48] uses SSL with a pre-training strategy to de-
rive the intrinsic data correlation. In this section, we remove its
attributes modules as we have no attributes for items, we only
compare the mask item prediction (MIP) and sequence-segment
correlation segment prediction (SP) in S3-Rec for fairness.

• CL4SRec [43] fuses contrastive SSL with Transformer-based SR
model, it only has crop, mask and reorder augmentation opera-
tors.

• CoSeRec [21] proposes two informative augmentation operators
leveraging item correlations and fuses CLwith Transformer based
model.

1https://www.yelp.com/dataset
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Table 2: Performance comparison of different methods on four datasets, where our approach IOCRec’s best results are in bold.
The underlined numbers are the best results besides IOCRec. The reported result of IOCRec for each dataset is the best result
of applying intention 𝑘 .

Dataset Metric PopRec GRU4Rec Caser BERT4Rec SASRec DSSRec S3-RecMIP,SP CL4SRec CoSeRec IOCRecCL4S IOCRecCoSe Improv.

Sports

NDCG@5 0.1538 0.2126 0.2020 0.2341 0.2497 0.2627 0.2594 0.2544 0.2543 0.2885 0.2856 9.82%
NDCG@10 0.1902 0.2527 0.2390 0.2775 0.2869 0.2997 0.3035 0.2916 0.2927 0.3272 0.3249 7.81%
HR@5 0.2293 0.3055 0.2866 0.3375 0.3466 0.3617 0.3673 0.3518 0.3510 0.3950 0.3915 7.54%
HR@10 0.3423 0.4299 0.4014 0.4722 0.4622 0.4802 0.4933 0.4674 0.4699 0.5152 0.5130 4.44%

Beauty

NDCG@5 0.1391 0.2268 0.2219 0.2622 0.2848 0.2992 0.2657 0.2888 0.2887 0.3215 0.3202 7.45%
NDCG@10 0.1803 0.2584 0.2512 0.2975 0.3156 0.3220 0.3018 0.3194 0.3202 0.3535 0.3511 9.78%
HR@5 0.2105 0.3125 0.3032 0.3640 0.3741 0.3874 0.3682 0.3779 0.3774 0.4166 0.4153 7.54%
HR@10 0.3386 0.4106 0.3942 0.4739 0.4696 0.4756 0.4805 0.4732 0.4751 0.5161 0.5112 7.41%

Yelp

NDCG@5 0.1622 0.3784 0.3696 0.4252 0.4113 0.4231 0.3634 0.4130 0.4183 0.4662 0.4659 9.64%
NDCG@10 0.2007 0.4375 0.4198 0.4778 0.4642 0.4711 0.4268 0.4669 0.4718 0.5162 0.5168 8.16%
HR@5 0.2415 0.5437 0.5111 0.5976 0.5745 0.5827 0.5256 0.5772 0.5836 0.6336 0.6365 6.51%
HR@10 0.3609 0.7265 0.6661 0.7597 0.7373 0.7412 0.7233 0.7433 0.7483 0.7872 0.7875 3.66%

Toys

NDCG@5 0.1286 0.1919 0.1885 0.2327 0.2820 0.2934 0.2307 0.2859 0.2854 0.3152 0.3144 7.43%
NDCG@10 0.1618 0.2274 0.2183 0.2698 0.3136 0.3256 0.2742 0.3173 0.3166 0.3464 0.3455 6.39%
HR@5 0.1977 0.2795 0.2614 0.3344 0.3682 0.3723 0.3368 0.3749 0.3735 0.4071 0.4078 8.78%
HR@10 0.3008 0.3896 0.3540 0.4493 0.4663 0.4798 0.4729 0.4723 0.4705 0.5032 0.5041 5.06%

4.1.4 Implementation Details. For our baselines, all parameters
are set following the suggestions from the original papers. Our
method is implemented in PyTorch. According to CL4SRec [43],
IOCRecCL4S randomly adopt {C,M,R} to augment all sequences,
while IOCRecCoSe according to CoSeRec [21], we randomly adopt {S,
I, M} for short sequences with less than 4 interactions and randomly
select {S, I, M, R, C} to augment the long sequences. For our proposed
IOCRec, we set 3 Transformer structures and 2 attention heads as
local module. The dimension of the embedding is 64, the maximum
sequence length is set to 50, the batch size and 𝜆 within {256, 1024}
and {0.1, 0.2, ..., 0.5}. The number of latent intentions is tuned from
{2, 3, ..., 6}. The model is optimized by Adam optimizer [16] with a
learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and linear decay of the
learning rate.

4.2 Performance Comparison (RQ1)
Table 2 presents the performance comparisons between several
baselines and our model (IOCRec). Here, we can find: PopRec per-
forms worse than sequential models in general, which indicates the
importance of mining the sequential patterns.

As for sequential recommendation baseline methods, self atten-
tion mechanism models (SASRec and BERT4Rec) achieve better
performance than traditional methods (Caser and GRU4Rec). DSS-
Rec further improves SASRec’s performance by using a seq2seq
training strategy and reconstructing the representation of the future
sequence in latent space. In addition, S3-Rec adopts SSL to provide
additional training signals to enhance representations, but we ob-
serve that the performance of S3-RecMIP,SP is inferior to SASRec
in some datasets. Although the lack of extra attribute information
is a potential influencing factor, another primary reason is that
S3-RecMIP,SP adopts the two-stage training preventing information
sharing between SSL and next-item prediction targets. After being
augmented by CL, CL4SRec and CoSeRec consistently outperform
SASRec slightly, which indicates the effectiveness of enhancing
sequence representations via CL on an individual user level. We

also find that CoSeRec exhibits worse performance than CL4SRec
in some datasets. The reason might be that the insert and substitute
augmentation operators in CL inevitably introduce noise, making
it difficult to be broadly applicable to all datasets. The introduced
noise also limits the effectiveness of CL.

Finally, IOCRec fuses multi-intention into SR model by a new CL,
which helps the encoder discover a good semantic structure across
user’s behavior sequences. The IOCRec consistently outperforms
existingmethods on all datasets, showing the necessity of extracting
multi-intention oriented CL for denoising problem.

(a) Multi-Intention without CL (b) Multi-Intention Oriented CL

Figure 3: Users’ multi-intention representations comparing
(a) and (b) on Yelp.

4.3 Multi-Intention Analysis (RQ2)
To evaluate the role of multi-intention contrastive learning, we
randomly select 2000 users to visualize multi-intention represen-
tations. The visualization is based on PCA decomposition, which
will project the embedding matrix into 3D. The results are shown
in Figure 3, different colors represent different intentions. We dis-
entangle multi-intention for each user on the Yelp dataset. In figure
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Table 3: Ablation study of IOCRec (NDCG@10).

Model Sports Beauty Yelp Toys

IOCRecCL4S 0.3272 0.3535 0.5162 0.3464
w/o GI 0.3196 0.3394 0.5150 0.3371
w/o LI 0.3135 0.3265 0.4856 0.3239
w/o IC 0.3130 0.3233 0.5043 0.3219

IOCRecCoSe 0.3249 0.3511 0.5168 0.3455
w/o GI 0.3177 0.3433 0.5126 0.3363
w/o LI 0.3129 0.3251 0.4818 0.3221
w/o IC 0.3105 0.3291 0.4924 0.3235

CL4SRec 0.2916 0.3194 0.4669 0.3173
CL4SRec+IC 0.3143 0.3311 0.4981 0.3318

CoSeRec 0.2927 0.3202 0.4718 0.3166
CoSeRec+IC 0.3168 0.3354 0.5017 0.3307

3(a), we employ IOCRec’s sequence encoder to generate multi-
intention representations. Though multi-intention representations
are effective. However, due to intentional diversity, it is still difficult
to distinguish different intentions of users. While in figure 3(b),
multi-intention oriented CL can separate different intentions, it
will make representations from the same intention to be close, and
those of dissimilar intentions to be far apart. Therefore, our new
method IOCRec can better distinguish the main intention and other
intentions for predicting the next item.

4.4 Ablation Study (RQ3)
In this section, we consider three variants for IOCRecCL4S and
IOCRecCoSe respectively, the details are as follows:
• w/o GI: we only remove the global intention in the sequence
encoder, so keep the local intention in multi-intention contrastive
learning to create views.

• w/o LI: we only remove the local intention in the sequence en-
coder, so keep the global intention in multi-intention contrastive
learning to create views.

• w/o IC: we only remove the contrastive learning task in IOCRec,
and use the sequence encoder that integrate global and local
intention representations to select the current main intention for
recommendation.

Table 3 reports the performance (NDCG@10) comparison between
IOCRec and its three variants. Moreover, we additionally add the
disentangled module based on CL4SRec and CoSeRec respectively.
When introducing disentangled module, we select the best inten-
tion 𝑘 on the dataset respectively. We find that the CL4SRec+IC
and CoSeRec+IC models also benefit from the contrastive learn-
ing of intention representations objective. For the IOCRec and its
three variants, without local intentions, the performance of the
IOCRec degrades significantly. This also shows that under the in-
fluence of only the global intentions, it is difficult to accurately
capture the user’s current intention. Meanwhile, in the absence
of the contrastive learning task in IOCRec, although the sequence

encoder that fuses global and local intentions can improve the rec-
ommendation performance, the effect is worse than CL4SRec+IC
and CoSeRec+IC. This also just proves the importance of multi-
intention oriented contrastive learning. Obviously, IOCRec obtains
the best performance against these variants on four datasets.

4.5 Parameter Sensitivity (RQ4)
Due to the space limit, we only report the effect of some key hyper-
parameters on the model performance.
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Figure 4: Performance (NDCG@10) comparison of the num-
ber 𝑘 of intentions on four datasets.

Impact of the number 𝑘 of intentions. It is crucial to find the
optimal number 𝑘 of intention on each dataset, which can subjec-
tively reflect the real intention of users under each dataset. Figure
4 shows the impact of the number 𝑘 of intentions on four public
datasets. For the all datasets, IOCRec obtains the better performance
when 𝑘 = 3, 4, 5. Hence, setting too small and too big numbers of
intentions cannot reflect the real situation of users.
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Figure 5: Performance (NDCG@10) comparison of the differ-
ent 𝜆.

Impact of contrastive learning loss. We investigate how the
contrastive learning loss of our proposed IOCRec interacts with
the sequential prediction loss. Specifically, we follow two data aug-
mentation strategies, IOCRec and ICL4SRec, respectively. We select
the best number 𝑘 of intentions for each dataset and keep other
parameters fixed to make a fair comparison. Figure 5 shows the
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Figure 6: Performance (NDCG@10) comparison of different batch size on four datasets.

evaluation results. Note that with larger value 𝜆, LCL contributes
more heavily in the Ljoint. In most cases, we observe that perfor-
mance deteriorates when 𝜆 increases over than certain threshold
(i.e., 𝜆 = 0.1).

Impact of negative sample size. As shown in Figure 6, during
the training of CL, we demonstrate that increasing the batch size to
capture user preferences is beneficial. We also additionally employ
multi-intention representations to increase the negative samples.
CoSeRec generates a pair of positive samples for each user, while
we generate 𝑘 pairs of positive samples for each user. Therefore, in
CL, the number of negative samples is not only related to the batch
size, but also related to the number of intention 𝑘 . So we select a
special case, where 𝑘 = 4 and batch size = 256 in our work while the
batch size = 1024 in our baselines to maintain the same number of
negative samples to ensure fairness. We can observe that IOCRec
deriving better representations, even if 𝑘=4 is not our best result
on some datasets.

5 RELATEDWORK
(1) Sequential Recommendation. Some earlier works [7] rely
on Markov chains to capture correlation among items. Due to the
nonlinear expressive capacity, LSTM [39] and GRU [13] are firstly
introduced to the session-based recommendation. Furthermore,
CNN-based models [33, 45] allow feature composition over the
behaviors in the interaction sequence. Recently, the attention mech-
anism has expressed promising potential to capture context-aware
preference for SR [2, 14, 15, 18, 31, 40]. However, ASReP [22] argues
that these methods still limit their expression performance in sparse
short sequences. Therefore, augmentation for short sequences is
desirable.

(2) Self-supervised Learning. SSL has become an emerging
trend in CV [3, 10, 12] and NLP areas [17]. The core of SSL is to
explore effective information from unsupervised data, which can
improve the quality of representation learning [8, 11, 28]. In the field
of SR, S3-Rec [48] adopts a pre-training and fine-tuning strategy,
and first proposes using mutual information to maximize attributes
and sequences. SGL [42] is a graph-based recommender system that
adopts augmentations by node dropout, edge dropout, and random
walk methods. RAP [35] proposes a pattern-enhanced contrastive
policy learning network for denoising and recommendation. SSI
[46] extracts the consistent knowledge by utilizing three SSL pre-
training tasks. The recent work, CL4SRec [43] proposes three data

augmentation techniques (i.e., cropping, masking and reordering)
from which two views are randomly sampled and applied to each
sequence. Based on that, CoSeRec [21] proposes two augmentation
operators (substituting and inserting). However, in CL, two views
obtained from the same user behavior sequence must be similar,
even if they are formed from distinct intentions. Such one-size-fits-
all approaches necessarily inject noise into representation learning,
lowering CL performance.

(3) Disentangled Representation Learning. There are mul-
tiple potential intentions behind each user’s behavior [5, 20, 32,
37, 41]. MacridVAE [24] is the first attempt that incorporate the
disentangled representation learning into user historical data at
both a macro and a micro level. Later, several GNN-based models
[23, 38] have been proposed to disentangle the multiple intentions.
In addition, DSSRec [25] proposes a sequence-to-sequence training
strategy to extract extra supervision signals in the disentangled la-
tent space. Instead, we disentangle the user intentions for a different
purpose than above methods. Our purpose is to create high-quality
views with intent-level, so as to guide the denoising process.

6 CONCLUSION
In this paper, we argue that data augmentation can amplify the
noises in the original sequence, which is not suitable for SR. Based
on this, we propose IOCRec to guide the denoising process. Firstly,
we design a global module to capture users’ global preferences,
which is beneficial in fitting well with the local module. Secondly,
we investigate an adaptive disentangled module to reuse global
module and local module expressive power, then select the current
main intention to improve the performance of SR. Finally, IOCRec
enhances the role of CL in SR by considering the construction of
positive pairs under the intent-level. Extensive experiments show
that IOCRec achieves state-of-the-art performance against a series
of SOTA solutions.
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